Plasmonic Physics of 2D Crystalline Materials
نویسندگان
چکیده
Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS2 and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an ab initio based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS2 are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.
منابع مشابه
Plasmonics of 2D Nanomaterials: Properties and Applications
Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light-matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra-thin two-dimensional (2D) nanomaterials attract tremendous ...
متن کامل2D Porous ZnO Nanosheets: One Pot Synthesis with Low Turn-on Field
Low turn-on field of 2.3 V/µm was found for the emission current density of 10 µA/cm2 from 2D porous ZnO nanosheets. High current density of 0.76 mA/cm2 was drawn at an applied field of 4.1 V/µm. The observed low turn-on field of porous ZnO nanosheets has been found to be superior to the other ZnO nanostructures reported in the literature. Also, the emission current stability over a period of 3...
متن کاملSurface plasmon resonance properties of silver nanoparticle 2D sheets on metal gratings
Grating-coupled propagating surface plasmons associated with silver-nanoparticle 2D crystalline sheets exhibit sensitive plasmonic resonance tuning. Multilayered silver-nanoparticle 2D crystalline sheets are fabricated on gold or silver grating surfaces by the Langmuir- Blodgett method. We show that the deposition of Ag crystalline nanosheets on Au or Ag grating surfaces causes a drastic change...
متن کاملInclusion of supported gold nanoparticles into their semiconductor support.
Supported particles are easily accessible as standard materials used in heterogeneous catalysis and photocatalysis. This article addresses our exemplary studies on the integration of supported nanoparticles into their solid support, namely gold nanoparticles into zinc oxide sub-micrometer spheres, by energy controlled pulsed laser melting in a free liquid jet. This one-step, continuous flow-thr...
متن کاملDesign and Simulation of Plasmonic Photodetectors to Optimally Detection of Biological Signals
This article has no abstract.
متن کامل